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ABSTRACT
The advent of high-resolution instruments for time-series
sampling poses added complexity for the formal definition
of thematic classes in the remote sensing domain—required
by supervised methods—while unsupervised methods ignore
expert knowledge and intuition. Constrained clustering is
becoming an increasingly popular approach in data mining
because it offers a solution to these problems, however, its ap-
plication in remote sensing is relatively unknown. This article
addresses this divide by adapting publicly available k-Means
constrained clustering implementations to use the dynamic
time warping (DTW) dissimilarity measure, which is thought
to be more appropriate for time-series analysis. Adding con-
straints to the clustering problem increases accuracy when
compared to unconstrained clustering. The output of such
algorithms are homogeneous in spatially defined regions.

Index Terms— Image time-series, constrained cluster-
ing, semi-supervised clustering, partition clustering.

1. INTRODUCTION

Remote sensing problems are characterised by large volumes
of data and a lack of reference data. Time-series are becom-
ing more readily available with the introduction of satellite
constellations that can capture the same location with increas-
ingly regular intervals. This opens up the possibility of moni-
toring land use and its evolution. Nevertheless, reference data
collection is complicated due to the complexity of thematic
classes and their lack of formal specification. As such, unsu-
pervised clustering is often used, offering a solution based on
the data alone. Expert knowledge and intuition is ignored.

“Intuition” is defined as non-formalised knowledge that
may be partial and imperfect. In general an expert has an
objective and an intuition of what they are looking for. In
a supervised setting it is necessary to express this intuition
through examples that sufficiently represent each class and
their variance. This is unrealistic in time series image analysis
as the data is relatively new and, as such, an expert may only
have a vague idea of the classes and their nature. Neverthe-
less, the work presented herein allows them to improve upon
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unsupervised clustering in applications that are still not for-
malised (i.e. a lack of nomenclature and class descriptions).

Constrained clustering (alias semi-supervised clustering)
is the process of introducing background knowledge (alias
side information) to guide a clustering algorithm. Back-
ground knowledge takes the form of constraints that supple-
ment information derived from the data—through a distance
metric—for a (generally small) subset of the data. A con-
strained algorithm finds a solution that balances the informa-
tion derived from both sources. They therefore relieve the
burden of collecting vast amounts of reference data needed
for supervised methods, which is not possible when dealing
with big data and difficult when dealing with time-series.

k-Means based algorithms are simple to apply, intuitive
to interpret, and are ubiquitous in remote sensing. This paper
therefore focusses on k-Means based semi-supervised algo-
rithms adapted to time-series. These approaches offer a new
tool for remote sensing researchers that, to the best of our
knowledge, has not been applied in the domain with respect
to time-series data. Crop classification is taken as an example
application although the techniques are general.

2. BACKGROUND

Due to the inherent complexity of clustering optimisation cri-
teria, classic algorithms always find a local optimum. Sev-
eral optima may exist, some of which may be closer to a
user’s requirement. It is therefore important to integrate prior
knowledge into the clustering process [1] through constraints.
By far the most common are must-link (ML) and cannot-link
(CL) constraints as they can be intuitively derived from user
input without in-depth knowledge of the clustering process
and feature space. More formally, an ML constraint between
two instances oi and oj states that they must be in the same
cluster, ∀k ∈ {1, . . . ,K}, oi ∈ Ck ⇔ oj ∈ Ck; a CL con-
straint on two instances oi and oj states that they cannot be in
the same cluster: ∀k ∈ {1, . . . ,K}, ¬(oi ∈ Ck ∧ oj ∈ Ck).

2.1. Time-Series Clustering

Time-series increase the complexity of clustering due to the
data’s properties. Almost all clustering algorithms use a norm



based distance function. This implies a fixed mapping be-
tween points in two time-series and are therefore sensitive
to noise and misalignment in time [2], etc. Dynamic time
warping (DTW) [3] overcomes these by finding an optimal
alignment between two time series by non-linearly warping
them. k-Means algorithms calculate centroids during optimi-
sation, which can be achieved using DTW barycenter aver-
aging (DBA) [4]. As such, classical constrained clustering
implementations require modification to use DTW and DBA
before application to time-series.

2.2. Constrained Clustering

Constrained clustering algorithms broadly fall into six cate-
gories: k-Means, Metric Learning, Spectral Graph Theory,
Ensemble, Collaborative, and Declarative. An in-depth re-
view of all appraoches is presented in [5]. This work focusses
on k-Means approaches, including one example from collab-
orative clustering, as they are ubiquitous in remote sensing.

In k-Means approaches, the clustering algorithm or the
objective function is modified so that constraints guide the al-
gorithm towards a more appropriate data partitioning. The
extension is done either by enforcing pairwise constraints,
e.g. COP-KMeans [6], or by using pairwise constraints to de-
fine penalties in the objective function, e.g. CVQE [7] and
LCVQE [8]. Each varies in its optimisation criterion and
search strategy, for further detail the reader is referred to [9].
A limitation of COP-KMeans is that it does not guarantee
convergence and will fail if a constraint is violated.

The ill-posed nature of the problem explains the abun-
dance of clustering methods. Each clustering algorithm is bi-
ased by its objective function and different methods, or the
same algorithm with different parameters and initialisation,
can produce very different results. Collaborative clustering
considers this variance as complementary, and forces muilti-
ple unconstrained clustering algorithms (agents) to collabo-
rate to reach an agreement by sharing information between
them [10]. Herein 3 k-Means agents exchange information by
performing split/merge/delete operations on clusters to reduce
their clustering dissimilarity. Constraints guide the collabora-
tive process (i.e. are not necessarily respected) by allowing
the relevance of each operation to be measured.

3. EXPERIMENTS AND RESULTS

Satellite data offers observations with a high spectral, spatial,
and temporal resolution and applications to crop monitoring,
identification of agricultural practices, or estimation of yield
and crop parameters are numerous [11, 12, 13]. A dataset that
covers cultivated land characterised by mixed farming with
a wide variety of irrigated and non-irrigated crops is used
herein as an example application. The study area is located

near Toulouse (Southwest France). The dataset1 represents 11
multispectral (green, red, and near-infrared) 1000×1000 pixel
images non-uniformly sampled from 15/02/07–20/10/07 and
captured by the Formosat-2 satellite. One of the images is
presented in Fig. 1a. A random subset of the images are taken
(within annotated locations, see Fig. 1b) such that the train-
ing and test sets contain 1974 and 9869 pixel time-series re-
spectively. The algorithms were evaluated using the test set.
Constraints were generated from the training set by randomly
sampling pairs and adding an ML or CL constraint depending
upon their labels. Reference data is the farmer’s declaration
to the EEA’s Common Agricultural Policy.

Ten random repetitions of the following constraint set car-
dinalities were generated: 5%, 10%, 15%, and 50% of the
training set cardinality N (a very small fraction of the number
of possible constraints, 1

2N [N − 1]). Samples are normalised
to unit length. Performance is measured with the adjusted
Rand index (ARI) and constraint satisfaction (Sat., the frac-
tion of satisfied constraints) averaged over the repetitions.

3.1. Results

The results for the unconstrained and constrained experi-
ments2 are presented in Table 1. The Euclidean distance
gives the highest unconstrained performance with two algo-
rithms due to the relatively coherent nature of the data. The
images are cloud free, meaning that the feature vectors are
noise free. The problem also lends itself to the Euclidean dis-
tance: the time-series are aligned in the time domain and the
AOI is spatially coherent, i.e. crops grow and are harvested in
the same time-frame over the image. If these assumptions are
broken DTW may offer better performance. SAMARAH sees
the largest increase in performance with constraints. Nev-
ertheless, adding constraints does not always lead to better
performance. Generally the most consistent improvements
in ARI (irrespective of distance measure) are observed with
SAMARAH, which does not guarantee constraint satisfaction.
The constraint satisfaction of those that do (COP-KMeans and
MIP-KMeans) improve when constraints are added. This is
generally associated with a reduction in ARI as the algorithms
struggle to resolve conflicts between the constraints and the
distance measure, this explains why ARI improvements are
observed with SAMARAH as it can violate constraints.

DTW and DBA’s complexity increases run time compared
to Euclidean versions (COP-KMeans with 5% constraints: 19
vs. 1185 seconds). MIP-KMeans takes half the time (DTW
with 5% constraints: 660 seconds) but results in lower ARI.
SAMARAH and COP-KMeans are comparable (DTW with
5% constraints: 1185 and 1237 seconds respectively).

This poses challenges for big-data. Nevertheless, by clus-
tering a subset of the data (as above), out-of-sample data

1Provided by the Centre d’Études Spatiales de la Biosphère (CESBIO)
Unité Mixte de Recherche CNES-CNRS-IRD-UPS, Toulouse, France.

2Implementations available from
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(a) Image (b) Reference Data (c) Class Labels

Fig. 1. An image from the time-series: 12 classes, and 11 time points (t4 displayed here).

Table 1. Unconstrained and Constrained ARI and constraint satisfaction. The best performances for each measure, constraint
fraction, and distance measure are highlighted in bold. Unconstrained satisfaction was measured using the 50% constraint sets.

Method Distance Unconstrained 5% 10% 15% 50%

ARI Sat. ARI Sat. ARI Sat. ARI Sat. ARI Sat.

COP-KMeans DTW 0.426 0.812 0.416 1.000 0.398 1.000 0.407 1.000 0.436 1.000
Euclidean 0.420 0.807 0.406 1.000 0.414 1.000 0.443 1.000 0.369 1.000

MIP-KMeans DTW 0.398 0.805 0.381 1.000 0.390 1.000 0.366 1.000 0.433 1.000
Euclidean 0.407 0.803 0.428 1.000 0.416 1.000 0.431 1.000 0.532 1.000

SAMARAH
DTW 0.406 0.802 0.597 0.870 0.657 0.876 0.637 0.867 0.681 0.878

Euclidean 0.463 0.817 0.691 0.884 0.682 0.884 0.714 0.890 0.702 0.885

points can be classified using a less expensive method, a k-
NN classifier for example. As such, all the labelled points
in the image time-series (see Figure 1b) are classified using
the clusterings calculated above. SAMARAH is used as it
achieves the highest performance. The result that represents
the median ARI for both distances are taken as they represent
a realistic result when using an arbitrary constraint set. These
form training sets for a k-NN classifier, where k = 3. The re-
sults are presented in Figure 2. As expected when classifying
unseen data, a reduction in ARI from the original clustering
is observed, decreasing by 0.172 (0.154) DTW and 0.191
(0.173) Euclidean (figures in parentheses include the ‘train-
ing’ clustering results). The clustering-classifications, how-
ever, result in homogeneous regions without including spatial
proximity information nor spatial smoothness constraints.
Figures 2e–2g confirm this by focusing on one region of a
classification trained on the highest ARI clusterings. The dis-
tribution of classes within each region is measured (randomly
distributed classes give 1/N , N is the number of classes, and
homogeneously distributed classes give 1, these are summed
over all regions and weighted by region size): COP-KMeans
0.602, MIP-KMeans 0.694, and SAMARAH 0.802.

It should be noted that the reference data used is imper-
fect, as is common in large scale remote sensing problems.
Figures 2c and 2d reveal that although the reference data
specifies one homogeneous region, the data does not—what
appear to be paths and tracks cross the field. This complicates
the clustering algorithm’s objective function and causes a
conflict between the constraints and information derived from
the distance measure. This is particularly disadvantageous
for algorithms that satisfy all constraints (COP-KMeans, and
MIP-KMeans), and could have contributed to the low ARI
scores (pre-processing to remove conflicting constraints may
correct this).

4. CONCLUSIONS

k-means based constrained time-series clustering for remote
sensing has been explored. It has been shown that both Eu-
clidean and DTW distance measures are effective, however, in
this study Euclidean offered the best performance (and low-
est run time). SAMARAH improves upon COP-KMeans and
unconstrained clustering with little user input.



(a) DTW (classification ARI = 0.507, overall ARI
= 0.525, training constraint fraction = 15%)

(b) Euclidean (classification ARI = 0.522, overall
ARI = 0.540, training constraint fraction = 5%)

(c) Image (d) Reference Data (e) COP-KMeans (f) MIP-KMeans (g) SAMARAH

Fig. 2. (a) and (b) SAMARAH out-of-sample classification; (c) and (d) a subset of the data highlighting the noise present in the
reference data (see text); and (e)–(g) image classification using maximum ARI (DTW) clusterings.
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